Биосенсор состоит из органического электронного компонента, на который дополнительно нанесен биораспознающий слой. Предложенное устройство простое и компактное, кроме того, его можно изготовить с помощью печатных технологий, отмечают эксперты. Результаты работы, поддержанной грантом Российского научного фонда (РНФ), опубликованы в журнале ACS Applied Materials and Interfaces.
В современной врачебной практике все чаще применяют электронные или оптические/квантовые сенсоры, будь то квантовые магнитометры и датчики для исследования работы мозга или ранней диагностики онкозаболеваний. Их размещают на теле пациента, а полученные параметры обрабатывают на смартфоне или компьютере.
В амбулаторных или внебольничных условиях требуются удобные сенсоры, которые оперативно помогут при оказании медицинской помощи. В этом случае преимущество имеют биосенсоры — приборы, в основе которых лежит чувствительный элемент, имеющий биологическую природу. Они не требуют специальных условий для работы, обладают высокой чувствительностью и быстротой отклика, а также способны обнаруживать совершенно разные молекулы.
Ученые из Института синтетических полимерных материалов имени Н. С. Ениколопова РАН, Института органической химии имени Н. Д. Зелинского РАН и Московского государственного университета имени М. В. Ломоносова разработали биораспознающий слой для устройства класса «электронный язык», который выявляет разные виды патогенов в биологических жидкостях — в крови, например.
Из чего состоит «электронный язык»
За основу «электронного языка» авторы взяли подложку с набором пикселей, каждый из которых представляет собой органический электролитический транзистор. На каждый пиксель ученые наносили особые молекулы — стрептавидин и ДНК-аптамеры (короткие нуклеотидные последовательности с определенной структурой), и они взаимодействовали с конкретными молекулами патогена.
Чтобы проверить зависимость электрических свойств распознающего слоя от структуры молекул, которые нанесены на пиксели, химики использовали соединение, основу которого составляли специально спроектированные и синтезированные молекулы. Это так называемые биотиновые якоря: они выступают как рецепторы на поверхности полупроводников и сохраняют свойства при попадании в биологические жидкости. Устройство с таким слоем помещали в буферный раствор, в котором оно стабильно работало, что говорит о потенциальной возможности выявления антигенов в биологических средах.
Эффективность платформы для биосенсоров авторы подтвердили, проведя с ее помощью определение вируса гриппа А. В ходе испытаний ученые получили хороший отклик на вирус гриппа А (Н7N1) с концентрацией 3×109 частиц/мл.
Также была показана специфичность его определения путем контрольных экспериментов с неспецифическим вирусом болезни Ньюкасла, поражающей птиц. Обеспечить требуемую специфичность удалось за счет грамотно спроектированной архитектуры сенсора.
«Электронный язык» пригодится в быту
«На основе "электронного языка" мы планируем получить миниатюрное устройство (размером с один и толщиной с два смартфона) с автономным питанием от батарейки и набором одноразовых сенсорных подложек. Оно позволит быстро проводить предварительный анализ на наличие патогенов, например, в питьевой воде, даже человеку, не имеющему специального образования», — рассказывает одна из авторов работы Елена Пойманова, кандидат химических наук, научный сотрудник Института синтетических полимерных материалов имени Н. С. Ениколопова РАН.
Посмотрите на самые неоднозначные разработки ученых в сфере технологий за последнее время:
Это тоже интересно: